Classification of BMI control commands from rat's neural signals using extreme learning machine
نویسندگان
چکیده
A recently developed machine learning algorithm referred to as Extreme Learning Machine (ELM) was used to classify machine control commands out of time series of spike trains of ensembles of CA1 hippocampus neurons (n = 34) of a rat, which was performing a target-to-goal task on a two-dimensional space through a brain-machine interface system. Performance of ELM was analyzed in terms of training time and classification accuracy. The results showed that some processes such as class code prefix, redundancy code suffix and smoothing effect of the classifiers' outputs could improve the accuracy of classification of robot control commands for a brain-machine interface system.
منابع مشابه
A Hybrid Machine Learning Method for Intrusion Detection
Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...
متن کاملOutlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means
One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...
متن کاملMachine learning based Visual Evoked Potential (VEP) Signals Recognition
Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...
متن کاملBrain emotional learning based Brain Computer Interface
A brain computer interface (BCI) enables direct communication between a brain and a computer translating brain activity into computer commands using preprocessing, feature extraction and classification operations. Classification is crucial as it has a substantial effect on the BCI speed and bit rate. Recent developments of brain–computer interfaces (BCIs) bring forward some challenging problems...
متن کاملFault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BioMedical Engineering OnLine
دوره 8 شماره
صفحات -
تاریخ انتشار 2009